Exact Area under a Curve

Ex. 1 Approximate the area under the graph of $f(x) = x^2$ on the interval [0,2] using a right Riemann sum with:

a)	4 subintervals	b)	16 subintervals	c)	64 subintervals	d)	256 subintervals

Write an expression that can be used to evaluate the exact area under the graph of $f(x) = x^2$ on the interval [0,2].

The definite integral is simply the limit of a Riemann sum as the width of each interval gets smaller and smaller as indicated in the formula above.

KEY QUESTION: Does the definite integral always equal the area?

The **integral** option in your calculator uses Riemann sums with $\Delta x = 0.0001$. It computes the area of each rectangle and gives the sum of all the rectangles from x = a to x = b.

Ex. 2 For each of the following functions, <u>sketch a quick graph</u> and shade the indicated region. Use the **integral** feature of your calculator to approximate the value of each definite integral.

Examples: Find the area of the region enclosed by the graph and the *x*-axis on the given interval

	8
1) $f(x) = 2x + 1; a = 0, b = 2$	
2) $f(x) = x^2 - 4; a = 2; b = 4$	
3) $f(x) = 3 - x^2; a = -1; b = 1$	
4) $f(x) = 2x - x^2; a = 0, b = 2$	
5) $f(x) = e^x; a = 0, b = 2$	